Non tutto il grasso vien per nuocere

Si avvicina il Natale e presto saremo tutti intorno a tavolate piene di prelibatezze provenienti da ogni dove. Ogni tanto affiorerà il pensiero di quanto grasso stiamo accumulando.. Ma per queste feste vogliamo fare in modo che nessuno si senta in colpa, neanche gli adipociti, le nostre cellule di grasso, ed in questo ci aiuteranno gli Scienziatimatti di oggi!

La Drosophila melanogaster, il moscerino della frutta, è un organismo modello usato spesso in biologia perché molto facile da modificare geneticamente e molto veloce nel riprodursi.

I ricercatori, armati di un laser in stile Jedi, hanno creato dei taglietti su degli embrioni di Drosophila per studiare come si rimarginano le ferite. Stranamente, delle cellule giganti si avvicinavano alle ferite. Queste erano le cellule del grasso, che nella Drosophila si chiamano FBCs (Fat Body Cells) e sono l’equivalente dei nostri adipociti.

Le cellule di grasso (in verde) si muovono verso la ferita piena di scarti di cellule epiteliali (arancioni nel modello, rosse nelle immagini di microscopio). Il tempo in minuti ci dice quanto è passato da quando è stata fatta la ferita. In alto vediamo un modello; al centro delle immagini prese al microscopio (linea bianca di 20 µm). Più in basso vediamo il video delle cellule di grasso che si muovono verso la ferita, messa in evidenza da un cerchio tratteggiato che appare all’inizio del video (da Franz et al. 2018).

Non si era mai vista una cellula del grasso muoversi prima d’ora! Tra l’altro, in genere le cellule si muovono camminando su una superficie o aggrappandosi a qualcosa, ma qui le FBC erano sospese in un liquido. Meravigliosamente, i ricercatori hanno visto che le FBC sanno nuotare e si muovono per contrazioni successive, come fanno le meduse.

Cellula di grasso (FBC) che si muove per raggiungere la ferita (il cerchio tratteggiato all’inizio del video). Qui vediamo l’actina, il citoscheletro della cellula che si contrae in maniera organizzata (simile ad un’onda) per far muovere la cellula. A sinistra vediamo tutta la cellula, mentre a destra vediamo solo una sezione centrale (da Franz et al. 2018).

Ma perché le cellule di grasso dovrebbero andare verso una ferita? 

Viste le dimensioni enormi delle FBC, gli Scienziatimatti hanno ipotizzato che potessero svolgere una funzione di tappo per impedire a batteri e altri patogeni di entrare nel corpo dalla ferita aperta. In effetti, una volta arrivate sul luogo del delitto, le FBC cominciavano a legarsi alle cellule sui bordi della ferita e a sigillare l’area.

Gli embrioni di Drosophila sono stati osservati al microscopio elettronico che permette di osservare dettagli estremamente piccoli. Così è stato possibile vedere che effettivamente le cellule di grasso sigillano l’area della ferita: osserviamo il quadratino in basso a destra nell’immagine grande: tra la cellula epiteliale (verde) e la cellula del grasso (blu) non resta neanche uno spiraglio! La barra bianca nell’immagine di sinistra è di 20 µm, mentre le barre nere dell’immagine a destra sono di 500 nm (da Franz et al. 2018).

Affinché un taglio si rimargini bene, è necessario pulire a fondo la zona ed a questo ci pensano i macrofagi, le cellule spazzine. Le enormi FBC possono spazzare tutto lo sporco verso i macrofagi per velocizzare il processo. Per di più, in Drosophile modificate geneticamente per non avere macrofagi, le FBC mangiavano loro stesse lo sporco al posto delle cellule spazzine!
Per finire, gli adipociti dei mammiferi possono produrre sostanze antimicrobiche, ed i nostri Scienziatimatti si sono chiesti se le FBC potessero fare altrettanto. Allora, dopo aver tagliato gli embrioni dei moscerini, hanno aggiunto dei batteri, degli Escherichia coli, per monitorare la risposta delle FBC, scoprendo così che anche le FBC possono produrre sostanze capaci di uccidere i batteri.

Ricapitolando, le cellule di grasso di Drosophila possono:

  • Nuotare verso una ferita appena fatta
  • Sigillare l’area per impedire l’accesso a corpuscoli e batteri
  • Facilitare la pulizia dell’area
  • Disinfettare la zona

Negli ultimi anni avevamo scoperto che il tessuto adiposo produce ormoni con effetti sul metabolismo ed è in grado di influenzare il decorso di una infiammazione. Purtroppo, quando c’è troppo tessuto adiposo queste funzioni sono accentuate e rischiamo infiammazioni croniche e diabete. 

Il segreto per beneficiare dei tanti lati positivi del grasso sta nel non esagerare: l’adipe serve nelle giuste quantità! 

Quindi, durante le feste rilassiamoci e pensiamo ai nostri Scienziatimatti, che ci hanno mostrato il ruolo chiave del grasso nella riparazione delle ferite. Possibile che anche le nostre cellule adipose si comportino come quelle di Drosophila e si muovano verso le ferite? Ci aspettano tante belle ricerche per scoprirlo!

Buon appetito e buone feste dagli Scienziatimatti!


Qui il link alla ricerca originale: https://doi.org/10.1016/j.devcel.2018.01.026

Fuuu…sion!

Le nostre cellule sono specializzate nel ricavare energia da uno zucchero, il glucosio: appena ne trovano un po’ lo digeriscono in un processo detto glicolisi dal quale ricavano 2 ATP, l’unità di misura dell’energia nel nostro corpo (un po’ come i kilowatt che usiamo per l’elettricità). Quello che resta alla fine della glicolisi viene portato ai mitocondri, gli organelli-centrali energetiche, che digeriscono questo “scarto” inserendolo nel ciclo di Krebs. Con questo ulteriore passaggio otteniamo altri 32 ATP!

I mitocondri funzionano solo se c’è ossigeno; infatti tutto il processo di produzione di energia che passa per i mitocondri è anche chiamato respirazione cellulare.

Nonostante sia estremamente conveniente usare i mitocondri (ci danno un sacco di ATP in più partendo dalla stessa quantità di nutrimento!), alcune cellule del nostro corpo a volte decidono di non usarli. Le cellule muscolari per esempio, durante uno sforzo intenso, non ricevono abbastanza ossigeno dal sangue e devono quindi accontentarsi di fare la glicolisi, generando un debito di energia che colmeranno non appena riavranno il prezioso gas.

I tumori usano molta più energia delle cellule sane perché si dividono molto più velocemente. Eppure sembra che le cellule tumorali decidano di fermarsi alla glicolisi, ricavando così meno energia dal glucosio, il ché le costringe a mangiarsi quantità molto più elevate di glucosio rispetto alle cellule sane.

Questo apparente paradosso (abbiamo già visto altri paradossi!) è conosciuto come Effetto Warburg dal nome del medico che lo ha descritto per primo.

La famosa PET è un esame che si basa proprio sull’effetto Warburg e permette di trovare tumori e metastasi semplicemente cercando le cellule che si mangiano più glucosio del dovuto.

Warburg ipotizzò che i tumori si fermassero alla glicolisi per via di carenze di ossigeno o per difetti ai mitocondri. Oggi sappiamo che in realtà le cellule tumorali spesso hanno ossigeno a disposizione e mitocondri sani, pertanto non interrompono il ciclo di Krebs, anzi, ne fanno di più! La glicolisi però aumenta in maniera più drastica, generando un accumulo di prodotti intermedi che i mitocondri non hanno tempo di usare.

I ricercatori del nostro articolo odierno hanno osservato che cellule in procinto di dividersi (le cellule tumorali, per esempio) hanno mitocondri più grandi di cellule che non si dividono.


A sinistra, foto di cellule in cui i mitocondri sono stati colorati in rosso ed i nuclei in blu. Negli ingrandimenti dentro i riquadri bianchi vediamo che i mitocondri di cellule in proliferazione diventano più lunghi. La linea bianca in basso corrisponde a 20 μm. Per avere una risoluzione maggiore (stavolta la linea bianca corrisponde ad 1 μm!) , le stesse cellule sono state osservate con un microscopio elettronico (immagini a destra) e di nuovo vediamo che i mitocondri (i fagioli indicati dalle frecce gialle) sono più grandi nelle cellule in divisione.

È noto che i mitocondri possono fondersi tra di loro diventando più grandi, probabilmente per produrre più energia. Gli scienziati hanno allora provato ad impedire la fusione dei mitocondri e… sorpresa: la proliferazione delle cellule diminuiva nonostante una aumentata produzione di energia!

Com’è possibile?

Abbiamo detto che i mitocondri usano ossigeno. Ogni volta che si maneggia ossigeno si finisce inevitabilmente per produrre delle sostanze pericolose: i radicali liberi. I mitocondri però sono delle centrali niente male ed hanno dei protocolli per smaltire le scorie pericolose.

Guardando alla capacità di smaltimento delle scorie, i nostri eroi hanno scoperto che mitocondri più grandi sono più bravi a smaltire i radicali liberi.


L’idea dei ricercatori è la seguente: quando c’è bisogno di tanta energia e quindi i mitocondri lavorano tanto, questi si fondono per contrastare l’aumento di radicali liberi. Se si blocca la fusione mitocondriale, la cellula produce sì tanta energia, ma accumula tanti radicali liberi e quindi si fa del male da sola.

Si tratta perciò di un equilibrio: la cellula vuole produrre energia in maniera efficiente nei mitocondri, ma ciò comporta un accumulo di scorie. Quindi troppa respirazione cellulare può essere dannosa e la fusione mitocondriale potrebbe essere un nuovo tallone d’Achille dei tumori!


Qui il link alla ricerca originale: https://elifesciences.org/articles/41351

Reticolo endoplasmatico: non emmental, bensì groviera

Ne “La lettera rubata”, Edgar Allan Poe (attenzione spoiler!! Se volete leggere la storia prima di proseguire cliccate qui) ci racconta di una lettera che è stata rubata e nascosta così bene che nessuno riesce più a ritrovarla. Finalmente una persona fuori dal comune, un detective che potremmo considerare matto, viene a capo del mistero: la lettera era stata impilata insieme al resto della corrispondenza in bella vista nell’ufficio del ladro, un nascondiglio tanto semplice quanto geniale perché sotto gli occhi di tutti!

Come il detective della storia, gli scienziati matti di oggi hanno scoperto un segreto che le scaltre cellule ci nascondevano da quasi 75 anni!

Le cellule hanno dei mini-organi, detti organelli, ognuno dei quali assolve ad un compito preciso. L’organello più grande della cellula è il reticolo endoplasmatico, incaricato di costruire le proteine. Per costruire una proteina la cellula apre le istruzioni (il DNA custodito nel nucleo), le copia su un RNA messaggero (mRNA), e le porta al reticolo endoplasmatico dove comincia l’assemblaggio delle proteine.

Il reticolo endoplasmatico è stato scoperto nel 1945, più o meno la preistoria per una scienza giovane come la biologia, e da allora abbiamo scoperto praticamente tutto sul suo conto: esistono il reticolo endoplasmatico rugoso, dove i ribosomi fanno la sintesi proteica, e quello liscio, senza ribosomi. Nel reticolo ci sono aree piatte dette cisterne, aree composte da grovigli di tubi (i tubuli), e piccole bolle (vescicole) sparse qua e là.

Reticolo endoplasmatico di una cellula. Già in pochi secondi di filmato ci accorgiamo di quanto l’organello sia dinamico (Schroeder et al. 2019).

Grazie alla microscopia a super-risoluzione (tecnica premiata col nobel per la chimica nel 2014) sappiamo che il reticolo endoplasmatico è estremamente dinamico: le cisterne possono trasformarsi in tubuli, i tubuli si allungano e si disfanno in continuazione, mentre le vescicole si fondono a tubuli e cisterne e tutti questi movimenti sono necessari per il corretto funzionamento del reticolo.

Eppure in questo organello si celava un segreto, proprio lì in bella vista davanti ai nostri occhi!

Sono serviti degli scienziati matti per scoprire che le cisterne non sono in realtà aree così piatte, ma bensì hanno più buchi di un groviera! Crateri microscopici, che si aprono e si chiudono in continuazione e che nessuno aveva mai notato prima!

In questo video vediamo un ingrandimento di un’area piatta del reticolo endoplasmatico (una cisterna). Nonostante il video duri solo un secondo, vediamo già un sacco di buchi piccolissimi che si aprono e si chiudono (Schroeder et al. 2019).

Intorno a questi buchi c’è  una proteina capace di curvare le membrane: Rnt4. Se Rtn4 viene eliminata dalle cellule, improvvisamente tutti i mini-buchi del reticolo endoplasmatico scompaiono.

Immagine del reticolo endoplasmatico (la proteina Sec61, in viola, è stata utilizzata per colorare l’organello e renderlo visibile). Grazie all’altissima risoluzione dell’immagine possiamo vedere i piccoli buchi (quelli del video sopra) circondati dalla proteina Rnd4 (colorata di verde). (Schroeder et al. 2019)

A cosa servono questi mini-buchi? Affinché il reticolo endoplasmatico possa muoversi, bisogna che la sua membrana venga tirata e rimodellata in continuazione.

Attaccandosi alla membrana del reticolo endoplasmatico, proteine come Rnd4 inducono una deformazione della membrana stessa.

Questi movimenti sono resi possibili proprio da proteine come Rtn4 che attaccandosi ad una membrana la piegano, generando un’increspatura che può diventare un tubulo o una vescicola. Ma il reticolo vuole mantenere il controllo su quando piegarsi. Allora, per fare stare buone tutte le Rtn4, le mette a costruire questi mini-buchi. Il vantaggio è che così facendo, il reticolo potrà accumulare tantissime Rnd4 senza essere obbligato a deformarsi. Quando decide di cambiare forma, avrà il suo esercito di proteine piegatrici già sul posto che in un batter d’occhio assolveranno al loro compito.

Chissà quanti altri segreti ci stanno nascondendo le cellule. Per fortuna esistono persone capaci di guardare il mondo con occhi sempre nuovi che ci aiuteranno a scoprirli!

” Egli è poeta e insieme matematico. E come poeta e
matematico, ha dovuto ragionare a dovere. Se fosse stato soltanto matematico, non avrebbe fatto
che una parte soltanto del ragionamento necessario. “

E. A. Poe

Qui il link alla ricerca originale: http://jcb.rupress.org/content/218/1/83

Il senso del tatto delle cellule

Abbiamo già visto qui che le cellule possono leggere le proprietà fisiche del loro habitat.
Come? Proviamo a toccare un oggetto. Nell istante in cui le nostre dita lo sfiorano, il nostro cervello elabora informazioni circa la sua temperatura, consistenza (rigido o soffice), fattezza (liscio o rugoso) ed altro ancora. Questo grazie ad una miriade di sensori tattili presenti sulle nostre dita che trasformano l’informazione in un segnale biochimico o elettrico interpretabile dal cervello.
Anche le cellule hanno dei sensori sulla loro pelle (la membrana plasmatica) che convertono gli stimoli in segnali biochimici o elettrici.
Quando si parla di segnali bisogna capire due cose:

  • Come si attiva il segnale? Ogni sensore è attivato da uno stimolo diverso (temperatura, rigidità, …).
  • Come si spegne il segnale? I sensori vengono portati all’interno della cellula tramite un processo chiamato endocitosi. Dato che lo stimolo attivatore è fuori dalla cellula, portando dentro il sensore fermerò il segnale!

L’articolo di oggi è un lavoro di un autore del blog e parla di come le cellule possono interpretare la rigidità!
I sensori incaricati di “leggere la rigidità” sono le integrine, proteine transmembrana, che spuntano un po’ all’interno e un po’ all’esterno della cellula. Le integrine toccano tutto quello che sta intorno alla cellula e quando trovano una cosa che gli piace, ci si aggrappano. Parte il segnale. La cellula prova a spegnerlo facendo rientrare l’integrina tramite endocitosi. Una proteina flessibile, la clatrina, si attacca alla membrana plasmatica piegandola verso l’interno. Vediamo due scenari possibili:

  • Superficie rigida: le integrine arrivano in massa, si aggrappano con tutta la loro forza e riescono a contrastare le clatrine che arrivano sempre più numerose. Si crea una placca di clatrina, un pezzo di membrana che non ce la fa a curvarsi e resta piatto. Altri sensori arrivano sulla placca convinti di venire endocitati, ma invece restano lì, accesi. Tra questi c’è il recettore del fattore di crescita EGF (EGFR) che quando è acceso dice alla cellula di proliferare. Molti tumori insorgono perché il segnale di EGFR non viene spento e le placche di clatrina potrebbero essere uno dei tanti modi che i tumori usano per lasciare acceso EGFR.
  • Superficie soffice: le integrine si aggrappano alla superficie esterna, ma la clatrina tira e la superficie esterna si piega fino a spezzarsi. L’integrina finirà col trovarsi dentro una bolla completamente ripiegata verso l’interno della cellula. La clatrina ha vinto, l’integrina viene endocitata.

modello

stiff-soft
A sinistra, una cellula su una superficie rigida. Le grosse macchie bianche sono placche di clatrina. A destra, una cellula su una superficie soffice. Ogni puntino che scompare coincide con un evento di endocitosi (la clatrina che vince).

EM
Le stesse cellule del video qua sopra (sinistra: superficie rigida; destra: superficie soffice) osservate al microscopio elettronico. Le placche di clatrina sono state colorate in giallo.

Le placche di clatrina non hanno però un ruolo puramente malvagio. Le cellule dell’osso vivono in un ambiente molto rigido ed infatti hanno le placche di clatrina, ma hanno imparato ad usarle per i loro scopi, senza necessariamente trasformarsi in tumori. Altre cellule invece (nel fegato, per esempio) passano tutto il tempo in ambienti soffici e se la rigidità del loro ambiente aumenta, formano placche di clatrina che inviano segnali di proliferazione. Se le cellule non imparano a controllare tali segnali, si può creare un tumore.
Capire come controllare le placche di clatrina potrebbe darci nuove armi per combattere i tumori e con questo lavoro speriamo di aver stimolato la curiosità dei ricercatori nei confronti di queste strutture 🙂


Qui il link alla ricerca originale: https://rdcu.be/ba6RO

Tesoro, mi si sono ingrandite le cellule!

3b-4Wooow!! Questo è quello che ci siamo detti in laboratorio quando siamo riusciti a generare l’immagine 3D che vedete qui.

Magari qualcuno sa già cosa stiamo guardando… si tratta di una cellula in mitosi, ovvero una cellula che si sta sdoppiando per dare origine a due cellule figlie. In rosso vediamo lo scheletro della cellula (i microtubuli) ed in blu il DNA organizzato in cromosomi.

Ma per quanto sia bello e ipnotico guardare questa ricostruzione 3D di cellule col loro DNA, il nostro WOW era dovuto alla tecnica particolare che abbiamo usato per produrre questa immagine: l’Expansion Microscopy. Tale tecnica è stata messa a punto da un gruppo di ricercatori di Boston, che si sono guadagnati quindi il posto d’onore nell’articolo di oggi.

Alla base dell’Expansion Microscopy ci sono un problema complesso ed una soluzione tanto semplice quanto geniale.

Il problema: ogni sistema ottico, che sia l’occhio umano, una lente di ingrandimento, un microscopio o un telescopio, possiede una certa risoluzione. La risoluzione è la distanza minima che può esserci tra due punti affinché si capisca che i due punti sono effettivamente separati. Se per esempio mettiamo su un tavolo 2 granelli di pepe a mezzo millimetro di distanza l’uno dall’altro e chiediamo a qualcuno un po’ lontano dal tavolo di contare i granelli, probabilmente la nostra cavia non saprà dirci se i granelli sono 1, 2 o magari 3. Lo stesso problema c’è anche con i telescopi (chi conosce le stelle binarie?) e con i microscopi. Per via di alcune proprietà fisiche delle lenti (le lenti dei nostri occhi, ma anche quelle dei microscopi ottici e dei telescopi) la risoluzione massima che può essere raggiunta anche dal microscopio ottico migliore del mondo è di circa 200 nanometri, ovvero 0,0002 millimetri. Certo, è una distanza molto piccola, ma nelle cellule abbiamo a che fare con delle vere e proprie miniature e a volte questa risoluzione non basta.

La soluzione: I nostri eroi hanno pensato che se i microscopi non potevano più essere migliorati, allora forse era il momento di migliorare le cellule! Perché non ingrandirle prima di osservarle? Avete presente quei dinosauri che si gonfiano in acqua? Il principio è lo stesso!

Con questa soluzione semplice alla portata di ogni laboratorio del mondo, i ricercatori hanno aumentato la risoluzione di un normale microscopio di circa 5 volte. Adesso possiamo distinguere due oggetti distanti solo 50 nanometri! Andate a vedere le foto originali nella ricerca: gli scienziati pazzi non si sono fermati alle cellule, ma hanno ingrandito dei pezzetti di cervello ed hanno fatto una ricostruzione in 3D dei neuroni come non se n’erano mai viste prima!

 

Spoiler alert: No, purtroppo non si possono produrre mostri giganti con questa tecnica.. ne siamo rimasti tutti delusi, ma l’amara verità è che bisogna bloccare (in gergo scientifico si dice fissare) le cellule o i tessuti che si vogliono analizzare. Il processo di fissazione uccide le cellule, quindi si potranno espandere solo cose morte…


Qui il link alla ricerca originale: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312537/