Non tutto il grasso vien per nuocere

Si avvicina il Natale e presto saremo tutti intorno a tavolate piene di prelibatezze provenienti da ogni dove. Ogni tanto affiorerà il pensiero di quanto grasso stiamo accumulando.. Ma per queste feste vogliamo fare in modo che nessuno si senta in colpa, neanche gli adipociti, le nostre cellule di grasso, ed in questo ci aiuteranno gli Scienziatimatti di oggi!

La Drosophila melanogaster, il moscerino della frutta, è un organismo modello usato spesso in biologia perché molto facile da modificare geneticamente e molto veloce nel riprodursi.

I ricercatori, armati di un laser in stile Jedi, hanno creato dei taglietti su degli embrioni di Drosophila per studiare come si rimarginano le ferite. Stranamente, delle cellule giganti si avvicinavano alle ferite. Queste erano le cellule del grasso, che nella Drosophila si chiamano FBCs (Fat Body Cells) e sono l’equivalente dei nostri adipociti.

Le cellule di grasso (in verde) si muovono verso la ferita piena di scarti di cellule epiteliali (arancioni nel modello, rosse nelle immagini di microscopio). Il tempo in minuti ci dice quanto è passato da quando è stata fatta la ferita. In alto vediamo un modello; al centro delle immagini prese al microscopio (linea bianca di 20 µm). Più in basso vediamo il video delle cellule di grasso che si muovono verso la ferita, messa in evidenza da un cerchio tratteggiato che appare all’inizio del video (da Franz et al. 2018).

Non si era mai vista una cellula del grasso muoversi prima d’ora! Tra l’altro, in genere le cellule si muovono camminando su una superficie o aggrappandosi a qualcosa, ma qui le FBC erano sospese in un liquido. Meravigliosamente, i ricercatori hanno visto che le FBC sanno nuotare e si muovono per contrazioni successive, come fanno le meduse.

Cellula di grasso (FBC) che si muove per raggiungere la ferita (il cerchio tratteggiato all’inizio del video). Qui vediamo l’actina, il citoscheletro della cellula che si contrae in maniera organizzata (simile ad un’onda) per far muovere la cellula. A sinistra vediamo tutta la cellula, mentre a destra vediamo solo una sezione centrale (da Franz et al. 2018).

Ma perché le cellule di grasso dovrebbero andare verso una ferita? 

Viste le dimensioni enormi delle FBC, gli Scienziatimatti hanno ipotizzato che potessero svolgere una funzione di tappo per impedire a batteri e altri patogeni di entrare nel corpo dalla ferita aperta. In effetti, una volta arrivate sul luogo del delitto, le FBC cominciavano a legarsi alle cellule sui bordi della ferita e a sigillare l’area.

Gli embrioni di Drosophila sono stati osservati al microscopio elettronico che permette di osservare dettagli estremamente piccoli. Così è stato possibile vedere che effettivamente le cellule di grasso sigillano l’area della ferita: osserviamo il quadratino in basso a destra nell’immagine grande: tra la cellula epiteliale (verde) e la cellula del grasso (blu) non resta neanche uno spiraglio! La barra bianca nell’immagine di sinistra è di 20 µm, mentre le barre nere dell’immagine a destra sono di 500 nm (da Franz et al. 2018).

Affinché un taglio si rimargini bene, è necessario pulire a fondo la zona ed a questo ci pensano i macrofagi, le cellule spazzine. Le enormi FBC possono spazzare tutto lo sporco verso i macrofagi per velocizzare il processo. Per di più, in Drosophile modificate geneticamente per non avere macrofagi, le FBC mangiavano loro stesse lo sporco al posto delle cellule spazzine!
Per finire, gli adipociti dei mammiferi possono produrre sostanze antimicrobiche, ed i nostri Scienziatimatti si sono chiesti se le FBC potessero fare altrettanto. Allora, dopo aver tagliato gli embrioni dei moscerini, hanno aggiunto dei batteri, degli Escherichia coli, per monitorare la risposta delle FBC, scoprendo così che anche le FBC possono produrre sostanze capaci di uccidere i batteri.

Ricapitolando, le cellule di grasso di Drosophila possono:

  • Nuotare verso una ferita appena fatta
  • Sigillare l’area per impedire l’accesso a corpuscoli e batteri
  • Facilitare la pulizia dell’area
  • Disinfettare la zona

Negli ultimi anni avevamo scoperto che il tessuto adiposo produce ormoni con effetti sul metabolismo ed è in grado di influenzare il decorso di una infiammazione. Purtroppo, quando c’è troppo tessuto adiposo queste funzioni sono accentuate e rischiamo infiammazioni croniche e diabete. 

Il segreto per beneficiare dei tanti lati positivi del grasso sta nel non esagerare: l’adipe serve nelle giuste quantità! 

Quindi, durante le feste rilassiamoci e pensiamo ai nostri Scienziatimatti, che ci hanno mostrato il ruolo chiave del grasso nella riparazione delle ferite. Possibile che anche le nostre cellule adipose si comportino come quelle di Drosophila e si muovano verso le ferite? Ci aspettano tante belle ricerche per scoprirlo!

Buon appetito e buone feste dagli Scienziatimatti!


Qui il link alla ricerca originale: https://doi.org/10.1016/j.devcel.2018.01.026

Mitosi

Le cellule ci insegnano l’economia circolare

Il riuso dei beni sta finalmente prendendo piede nelle nostre città. Conosciamo numerose app anti-spreco (per esempio Too Good To Go, per il cibo) e le usiamo per ridurre il nostro impatto ambientale.

Ma stiamo davvero facendo qualcosa di nuovo? Da più di un miliardo di anni, le nostre cellule usano un processo antispreco chiamato autofagia: organelli e proteine difettose vengono raccolte da ispettori specializzati, LC3B e GABARAP, che le portano ai lisosomi per smontarle e riutilizzarne i pezzi.

Questo sistema super-efficiente ci permette di sopravvivere anche in mancanza di risorse: se il cibo scarseggia, gli organelli malandati vengono smontati grazie all’autofagia ed usati come nutrimento.

L’autofagia può essere attivata anche solo in regioni specifiche della cellula in modo da controllare precisi eventi cellulari. Per esempio, la mito-fagia (autofagia dei mitocondri) ricicla i mitocondri danneggiati controllando così la respirazione cellulare. Ogni “tipo” di autofagia è regolato da meccanismi ancora sconosciuti. Studiare tali meccanismi potrebbe servire per curare le malattie causate da difetti nell’autofagia, come per esempio i tumori.

Gli Scienziatimatti di oggi hanno osservato che il processo di divisione cellulare, la mitosi, era più lento nelle cellule in cui l’autofagia era difettosa.

Sinistra = cellula normale che si sta dividendo (siSCR). Destra = cellula in cui l’autofagia è difettosa (la proteina ULK1 è stata eliminata con la tecnica RNA interference, siULK1) che non riesce a dividersi in così poco tempo. In verde il DNA (H2B) ed in rosso i microtubuli (Tubulina) – (riadattata da: Holdgaard. et al 2019).

Una cellula che si divide deve copiare il DNA e compattarlo nei cromosomi per distribuirlo in parti uguali alle due cellule figlie. Dei filamenti detti microtubuli si dispongono a creare dei binari che condurranno i cromosomi ai due estremi della cellula in divisione. I microtubuli nascono da un organello, il centrosoma, il quale nella mitosi si spezza in due. I due frammenti si allontanano portandosi dietro ognuno un’estremità diversa dei microtubuli, formando una struttura bellissima da vedere chiamata fuso mitotico.


In rosso il Fuso Mitotico (tubulina), in verde i frammenti di centrosoma (gamma-tubulina), ed in blu in DNA (DAPI). Nella prima riga vediamo cellule normali (siSCR), nella seconda (siULK1) e nella terza (siATG7) cellule in cui l’autofagia non funziona perché le proteine ULK1 o ATG7 sono state eliminate e quindi ci sono tanti frammenti di centrosoma. Le barre bianche corrispondono a 10 µm (riadattata da: Holdgaard. et al 2019).

Nelle cellule in cui l’autofagia era difettosa, gli Scienziatimatti osservavano spesso tre o più pezzetti di centrosoma, come se l’organello si fosse rotto in più punti (vedi figura sopra, immagini verdi).

Questo difetto è molto grave perché la cellula ha solo due copie dei cromosomi e se i microtubuli tirano in più direzioni, il DNA si distribuirà in maniera sbagliata nelle due cellule figlie, cosa frequente nei tumori.

Per capire cosa stava succedendo, i ricercatori hanno fatto una lista di tutte le proteine che vengono prese dagli ispettori LC3B e GABARAP ed hanno scoperto che i GABARAP raccoglievano le proteine dei satelliti centriolari, una struttura che avvolge i centrosomi e collabora con loro.

Si trattava forse di un nuovo meccanismo di autofagia? Come verificare questa possibilità?

1.       Bloccare l’autofagia eliminando due proteine necessarie per questo processo. Se i satelliti centriolari sono digeriti dall’autofagia, adesso dovrebbero accumularsi.. ed è proprio quello che vediamo qui:

Nelle immagini di microscopio a sinistra: in verde i satelliti centriolari (PCM1), ed in blu in DNA (DAPI). Nella prima colonna vediamo cellule normali (siSCR), nella seconda (siULK1) e terza (siATG7) cellule in cui l’autofagia non funziona e dove si accumula quindi PCM1. La riga bianca corrisponde a 10 µm.
Le immagini a destra sono un Western Blot: le cellule vengono spaccate e le proteine al loro interno vengono analizzate con degli anticorpi. Le bande nere che vediamo corrispondono alla proteina scritta a destra. Più la banda è scura, più proteina c’è. Prima di essere spaccate, le cellule sono state trattate con Bafilomicina (Baf), un farmaco che blocca l’autofagia. Così, le proteine che normalmente vengono mangiate dall’autofagia si accumulano. LC3B è conosciuta per essere mangiata dall’autofagia ed è quindi un controllo positivo. Vinculin non è toccata dall’autofagia e non varia nell’esperimento. Le proteine dei satelliti centrosomali si accumulano! (Da Holdgaard. et al 2019).

2.       Togliere alla cellula il nutrimento in modo da obbligarla a fare più autofagia. Ora i satelliti centriolari dovrebbero diminuire.. ed ancora una volta i dati confermano l’ipotesi! Per di più, bloccando l’autofagia con un farmaco si può evitare la diminuzione dei satelliti centriolari!

Di nuovo un Western Blot: Le bande nere che vediamo corrispondono alla proteina scritta a destra. Più la banda è scura, più proteina c’è. Prima di essere spaccate, alle cellule è stato tolto il nutrimento (EBSS) per aumentare l’autofagia. Allo stesso tempo, un altro gruppo di cellule a digiuno è stato trattato con bafilomicina per bloccare l’autofagia (EBSS+Baf). p62 è conosciuta per essere mangiata dall’autofagia ed è quindi un controllo positivo (come LC3B nell’imagine precedente). Vinculin non è toccata dall’autofagia e non varia nell’esperimento. I centrosomi satellitari si comportano come le proteine mangiate dall’autofagia (da Holdgaard. et al 2019).

Grazie agli Scienziatimatti di oggi, adesso conosciamo un nuovo tipo di autofagia, la dorifagia (dal greco doryforos, satellite), necessaria perché la divisione cellulare vada a buon fine e quindi fondamentale per il nostro sviluppo e la nostra vita.


Qui il link alla ricerca originale: https://www.nature.com/articles/s41467-019-12094-9

Corsa ad ostacoli contro i tumori

Pronti, partenza, via! 

Gli scienziatimatti di oggi hanno dato il via ad una corsa ad ostacoli dove le concorrenti sono cellule di tumori del seno o della pelle.

Il percorso è stato sapientemente costruito dalle mani dei ricercatori con l’intento di mimare quello che succede nel corpo umano quando una cellula si stacca dal tumore per andare a formare una metastasi. La cellula pioniera si troverà in un ambiente nuovo, lo spazio interstiziale, pieno di liane (fibre di collagene) e cunicoli contorti in cui bisogna fare le acrobazie per riuscire a muoversi. Per fortuna, nella maggior parte dei casi, la cellula resterà impantanata in questa giungla e morirà. Ma sappiamo purtroppo che le metastasi esistono, ed anzi spesso sono più pericolose dei tumori primari.

L’idea dei ricercatori è stata perciò di selezionare le cellule vincitrici della corsa ad ostacoli, quelle che nel corpo avrebbero formato delle metastasi, per capire cosa le rendeva più atletiche delle altre cellule tumorali.

1. Le cellule provano a passare attraverso dei passaggi molto stretti. 2. La cellula prova a tastare il passaggio per capire se può farcela ad attraversarlo e poi prova a strizzarsi (3), ma se il nucleo non passa, non c’è niente da fare e la cellula tornerà indietro. 4. La cellula prova a deformare il nucleo. Se il nucleo si deforma troppo, esplode e la cellula muore. Se invece il nucleo passa, allora la cellula ce l’ha fatta ed ha vinto la gara (5).
I ricercatori hanno confrontato le cellule in 1. con le cellule in 5.

Le cellule campionesse erano mediamente più piccole delle altre, cosa che spiegherebbe la loro abilità ad insinuarsi negli stretti cunicoli che erano gli ostacoli della corsa. 

Ma la dimensione della cellula non è troppo importante dal momento che una cellula può strizzarsi per passare attraverso pertugi microscopici. Invece il nucleo, il contenitore del DNA, non può essere schiacciato troppo e quindi le sue dimensioni sono in genere determinanti. Stranamente, i nuclei delle cellule super-atletiche erano di dimensioni simili a quelli delle altre cellule e, per di più, erano più rigidi, quindi meno deformabili!

Il citoscheletro (l’equivalente dei nostri tendini, muscoli ed ossa) delle cellule atlete era però molto diverso da quello delle altre cellule e questo rendeva le cellule campionesse molto più flessibili e soffici delle altre.

In bianco vediamo l’actina, un componente del citoscheletro delle cellule. In rosso una proteina chiamata FAK, un altro componente del citoscheletro. Vediamo che le cellule “atlete” (nella colonna di destra) hanno molte meno fibre bianche rispetto alle cellule nella colonna di sinistra.
La riga bianca indica una lunghezza di 5 µm. (figura adattata da Rudzka et al. 2019)

Per capire cosa causasse questa differenza, le cellule atlete sono state analizzate con una tecnica che è in grado di dirci quali geni sono accesi e quali spenti (RNA-seq). 

La serie di eventi scritta qui sotto viene chiamata il dogma della biologia perché in genere (in genere, non sempre!) funziona così: le cellule leggono il prezioso DNA nel nucleo, ne copiano delle parti sull’RNA, e spediscono gli RNA fuori dal nucleo dove servono da istruzioni per costruire le proteine.

DNA → RNA → Proteine

Gli Scienziatimatti si sono accorti così che una proteina risultava particolarmente attiva nelle cellule atlete. Questa proteina si chiama ERK ed è una vecchia conoscenza per gli oncologi; infatti è superattivata nella stragrande maggioranza dei tumori. 

Si è sempre pensato che ERK dicesse alle cellule di dividersi (proliferare), facendo così crescere i tumori. Gli scienziatimatti hanno scoperto che in più, ERK fa diventare più soffici le cellule, rendendole più brave a metastatizzare.

Spegnendo ERK nelle cellule atletiche il loro citoscheletro tornava normale e le cellule tornavano ad essere rigide nei movimenti e poco atletiche

Le cellule che ricevono la medicina in grado di spegnere il segnale di ERK tornano ad avere le fibre di actina dappertutto e la proteina FAK ai lati come le cellule non selezionate che abbiamo visto nell’immagine precedente (Rudzka et al. 2019)

Purtroppo i tumori si adattano in fretta alle terapie contro ERK ed acquisiscono delle resistenze che li rendono immuni a queste medicine. Quindi sarà necessario studiare nuovi metodi per spegnere questo segnale, ma da oggi lo si potrà fare con una certezza in più: che le nuove terapie potranno essere efficaci anche nel combattere le metastasi.



Qui il link alla ricerca originale: https://jcs.biologists.org/content/132/11/jcs224071