Lumache di mare contro il diabete

Chi vorrebbe giocare con un animale velenoso come quelli che si trovano in Australia e paesi limitrofi? Probabilmente nessuno… tranne gli scienziatimatti di oggi, i quali si sono imbattuti in una lumaca di mare dall’apparenza innocua, ma che nasconde un’arma pericolosissima: non appena un ignaro pesce le passa accanto, il mollusco gli getta addosso una sostanza paralizzante e se lo mangia.

A sinistra vediamo la lumaca Conus geographus e due altre lumache della stessa specie. A destra la mappa delle Filippine con i punti in cui le lumache sono state raccolte (Ahorukomeye et al. 2019)

La lumaca scatena nel pesce un coma ipoglicemico, lo stesso che colpisce i diabetici se prendono troppa insulina.

L’insulina è l’ormone che regola la quantità di glucosio nel sangue (la glicemia) ed abbiamo già parlato qui di come il glucosio sia la principale fonte di nutrimento delle nostre cellule. Appena mangiato abbiamo glucosio in abbondanza ed il corpo produce insulina. Le cellule con le antenne (recettori) adatte a captare l’insulina sentiranno questo messaggio: “C’è un sacco di cibo! Presto, riempite le dispense!”.

La glicemia si abbasserà fino all’arrivo del secondo ormone, il glucagone, che dirà alle cellule di smettere di rimpinzarsi.
Un difetto molto conosciuto di questo sistema è il diabete. Esistono tre tipi di diabete:

  • Tipo 1: il pancreas, organo incaricato di produrre l’insulina, smette di generare l’ormone;
  • Tipo 2: le nostre cellule diventano “assuefatte” all’insulina ed hanno bisogno di dosi sempre maggiori di ormone;
  • Diabete gestazionale: una forma transitoria di diabete che si verifica nelle donne in gravidanza.

Quasi sempre l’unica cura possibile consiste nell’iniettarsi insulina in corrispondenza dei pasti.

L’insulina non agisce istantaneamente, ma dall’iniezione al momento in cui si abbassa la glicemia c’è un ritardo di circa 15 minuti.

In più, l’insulina non ama essere prigioniera di un recettore, così appena viene legata fa di tutto per staccarsi e disattivare il recettore. Questo meccanismo, detto cooperazione negativa, impedisce che la risposta all’insulina duri troppo a lungo e diventi quindi dannosa. Infatti se la glicemia si abbassa troppo, il corpo “va in stand-by” per ridurre la consumazione energetica, e si cade così in coma.

Ma torniamo a Conus geographus. Le lumache sono conosciute per la loro lentezza, mentre i pesci sono in genere agili e scattanti (qualcuno ha mai provato ad acchiappare un pesce con un retino al mare?).

Quindi per avere una minima speranza di catturare un pesce, la nostra amica Conus avrà bisogno di un’arma ultra-rapida. L’insulina non risponde certo a questi requisiti visto che impiega 15 minuti per entrare in azione!

Il “veleno” prodotto dalla lumaca è però talmente simile alla nostra insulina da essersi guadagnato il nome di Con-insulina (Con perché prodotta da Conus). A differenza della nostra insulina, la Con-insulina:

  • ha un effetto immediato sulla glicemia.
  • Ha un effetto più potente. Ecco perché i pesci cadono istantaneamente in coma. Questo potrebbe significare che la nuova insulina non soffre di cooperazione negativa, ma resta legata più a lungo ai recettori.

La Con-insulina potrebbe ispirarci nella ricerca di terapie più efficaci per i diabetici!

Oltre che ringraziare i ricercatori, dobbiamo delle scuse a Conus geographus e a tutti gli animali velenosi che nonostante la nostra reticenza ad incontrarli ci offrono spunti per migliorare la nostra salute! 🙂



Qui il link alla ricerca originale:

https://elifesciences.org/articles/41574

Piccoli alleati per combattere i tumori

Abbiamo già sentito parlare dei batteri, quegli esserini a volte patogeni (che ci fanno cioè ammalare se li incontriamo) e a volte invece innocui o addirittura utili come quelli che ci aiutano a digerire il cibo (il microbiota nell’intestino!).

Per difendersi da altri microorganismi o semplicemente come scarto del loro metabolismo, alcuni batteri producono sostanze con effetto antitumorale. In genere però ne producono in quantità minuscole, non sufficienti per eventuali terapie nell’uomo. Queste sostanze vengono quindi riprodotte in laboratorio per essere usate nelle chemioterapie (ebbene sì, tanti farmaci li abbiamo solo copiati dalla natura, non li abbiamo inventati noi!).

Un’altra caratteristica interessante dei batteri è la loro capacità innata di intrufolarsi nei tumori e di crescere al loro interno. Questo può dipendere da vari motivi, tra cui:

  • i tumori potrebbero proteggere i batteri dal nostro sistema immunitario, il quale normalmente gli da la caccia.
  • Spesso nei tumori c’è poco ossigeno e batteri anaerobi (che crescono cioè in assenza di ossigeno) potrebbero trovarvi quindi una casa accogliente.

La trovata geniale: i batteri potrebbero essere utilizzati come veicoli per trasportare farmaci dentro i tumori. Basterebbe trovare un modo per fargli produrre più sostanze antitumorali. Se questo trucco funzionasse, diventerebbe possibile produrre chemioterapici direttamente dentro il tumore, riducendo quindi gli effetti collaterali ed aumentando l’efficacia dei trattamenti.

Degli scienziati matti hanno deciso di testare questa ipotesi avvalendosi di un batterio comunissimo che non causa malattie nell’uomo: l’Escherichia coli (per gli amici, E.coli). Questo batterio genera ossido nitrico (formula chimica: NO), una sostanza capace di uccidere alcuni tipi di cellule tumorali.

Per l’incursione in territorio tumorale, gli E.coli sono stati equipaggiati con armi potenti: sono stati rivestiti di nanoparticelle che si attivano con la luce ultravioletta e rilasciano energia che può essere utilizzata dai batteri stessi per aumentare il loro metabolismo e produrre più ossido nitrico.

(A) Rappresentazione della produzione dei batteri armati di nanoparticelle. (B) Immagine al microscopio elettronico di un’E.coli (arancione) coperta di nanoparticelle (viola).
Da Zhen et al. 2018

I mini-soldati sono stati iniettati in topi malati di cancro con risultati stupefacenti: andando alla ricerca di un ambiente senza ossigeno, gli E. coli sono riusciti a penetrare proprio nel cuore del tumore, dove le chemioterapie classiche a volte non riescono ad arrivare. Da lì hanno ucciso le cellule malate a colpi di ossido nitrico!

Qui è stata usata una sostanza che emmette luce verde quando manca ossigeno (situazione detta ipossia o, in inlglese, hypoxia, che è l’opposto di normoxia). Nell’immagine vediamo che i batteri (in rosso) si accumulano solo dove manca ossigeno. Da Zhen et al. 2018.

In questo grafico possiamo vedere come il tumore abbia smesso di crescere grazie ai batteri armati (CCN@E.coli).

Sulle X vediamo il tempo che passa. Sulle Y le dimensioni del tumori. Vediamo che il tumore trattato con batteri armati (E.coli @CCN), la linea nera, non aumenta di dimensioni. Le tre stelline a destra significano che la linea rossa e la linea nera sono statisticamente diverse, cioè l’esperimento è riproducibile. Da Zhen et al. 2018.

Il rischio più grande di un simile trattamento è che il nostro corpo scopra gli E.coli e decida di attaccarli in quanto invasori. L’attacco può danneggiare anche le nostre cellule scatenando una setticemia, una grave infiammazione estesa a tutti gli organi che ci può far morire.

Nessuno dei topi trattati ha però avuto febbre, né altri segni di infiammazione. Quindi pare che i batteri scelti dai ricercatori siano abbastanza tollerati dal corpo!

Forse i lettori più attenti lo avranno già notato: il tumore purtroppo non scompare del tutto, ma già il fatto che smetta di crescere è un grande traguardo.

In ogni caso questa ricerca ci mostra ancora una volta quanti ricercatori siano impegnati nella battaglia contro il cancro e quanto la fantasia sia utile nello sviluppare nuove terapie.



Qui il link alla ricerca originale: https://rdcu.be/bqHQc